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We argue that it is imperative that modelers select the right, and

potentially differing levels of abstraction for different

components of their computational models, as too global or too

specific components will hinder scientific progress. We

describe ACT-R, from the perspective that is a useful modeling

architecture to support this process, and provide two examples

in which mixing different levels of abstraction has provided us

with new insights.
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Introduction
What is the goal of a computational model? We build a

model to increase our understanding of human cognitive

behavior. Recreating the observed phenomena through

simulation demonstrates that all important aspects have

been accounted for. However, because it is not feasible to

simulate cognition up to the finest level of detail, theo-

retical importance will dictate on which aspects to focus.

This means that for each of the components involved in

the explanation of cognitive performance, the right level

of abstraction has to be selected.

When a computational model is constructed to explain

how linguistic reference processing is constrained by

memory load (e.g., [1]) equipping that model with a

complete computational account of how photons hitting

the retina results in the encoding of letters and eventually

words is typically considered unnecessary. Instead, such

models assume that a visual system parses the external

world and provides the core model with useable input
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chunks (e.g., ‘she’, or ‘the woman’). Based on this input,

the model starts applying a sequence of linguistic proces-

sing rules (e.g., ‘she’ refers to the most recently intro-

duced female agent), and stores and recalls information

from memory. By comparing the model’s output, collect-

ed under different memory capacity settings, with empir-

ical data collected from participants under different

memory load conditions, evidence for the role of memory

capacity in language processes is collected. Although it

would, in principle, be possible to extend this model by

incorporating detailed models of the visual system (e.g.,

Leabra, [2�]), such an extension would make the model

overly complicated and detract attention — of both mod-

eler and reader — from the main processes studied.

It is not unlikely that the success of computational

modeling paradigms that focus on a single aspect of

cognitive processing is partly due to exactly this aspect:

they allow the modeler and reader to focus on the most

important aspects of the task at hand. For example,

models that implement drift-diffusion or linear-ballistic

accumulator processes focus on those task aspects that

influence decision making, and assume that one parame-

ter indexes how much time is spent on all non-decision

related processes. Because of this focus and the model’s

intrinsic properties, these models allow for very precise

explanations of the studied tasks. At the same time, the

focus of these models also constrains their applicability.

For example, when a sequential series of decisions needs

to be made, and the outcome of a first decision influences

the motor preparation associated with the next decision,

one-shot decision making models need complex exten-

sions to account for the phenomena observed in more

complex tasks.

Although both cases discussed above describe models

where the authors have abstracted away from parsing

visual input, other authors have specifically focused on

extending models of basic cognitive processing by con-

structing better accounts of visual processing. An exam-

ple of such a model is described by Engelmann et al. [3�],
who demonstrates  that extending a language model by

incorporating a precise account of eye movements dur-

ing reading provides new explanations for existing phe-

nomena which can be tested in subsequent work. This is

typical for models of more complex tasks, as accounting

for the interaction with the environment (both percep-

tion and action) is often crucial for explaining the phe-

nomena of interest (e.g., [4,5]). Therefore, although
www.sciencedirect.com
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focusing on a single element can improve the under-

standing and explainability of the modeling effort, it is

often necessary to include interactions with the envi-

ronment in a model to provide a satisfactory explanation

of the data. This raises the question how to determine

which level of abstraction to aim for: when is the exten-

sion of a model warranted given the additional explana-

tory power?

Often cited as general law [6], it is thus essential for

complex computational models to strive for a balance

between complexity and simplicity. However, instead of

an overall guiding principle, this version of Ockham’s

razor can also be applied at a more modular level. The key

components of a computational model should be

accounted for with as much precision as possible, whereas

the auxiliary components can be kept as simple as possi-

ble. This would, for example, allow for the development

of integrated computational neuroscience models were

the most critical aspect of the task is modeled at a

biologically plausible level, whereas other components

are modeled at a level that is typically associated with

traditional information-processing models. However, as

soon as different models have slightly different goals, for

example because the modelers aim for explaining slightly

different phenomena, using Ockham’s razor to decide

between models becomes problematic are no direct com-

parisons can be made.

Categorizing computational models in terms of differ-

ent levels of description is hardly new. Marr and Pog-

gio’s levels of analysis [7] categorize information

processing systems at three distinct, but complementa-

ry levels, ranging from the most global computational

level, via an algorithmic level, to the physical level.

Similarly, Newell’s bands of cognition [8] describe

cognitive performance at four levels of description;

the Social, Rational, Cognitive and Biological Bands

(see also [9,10]). Here we argue that modern computa-

tional models should not be analyzed at just one of

these levels, but that within a single computational

model different levels, analogous to the levels or bands

proposed earlier, can, and often should, be combined

(see also [11]).

In the remainder of this review we will discuss how the

ACT-R cognitive architecture can be used as a modular

framework in which modules of different levels of ab-

straction can be combined into one coherent computa-

tional model. We will first briefly introduce ACT-R,

followed by two examples of how ACT-R’s standard

modules can be substituted with more detailed accounts

of specific processes. These two examples illustrate,

respectively, how more detailed accounts can extend a

computational models’ scope, and how additional model-

ing constrains can be derived from more precise modeling

of a single module.
www.sciencedirect.com 
ACT-R: a modular cognitive architecture
An example of a framework that can be used to integrate

modules of different levels of description is the ACT-R

cognitive architecture [12]. ACT-R is first and foremost a

psychological theory, for instance explaining how our

declarative memory system functions (e.g., [13��]). In

addition, ACT-R is implemented as a computational

framework, in which simulations of particular tasks can

be instantiated (e.g., recovering from interruptions, [14]).

Thus, the architecture ACT-R provides the general psy-

chological theory — the architecture of the mind — while

models run on this architecture to simulate behavior in

particular tasks. Importantly, ACT-R was developed to

model complete tasks, from perception to action. An

ACT-R model typically interacts with the same interface

(albeit often simulated) as human participants, providing

response times, accuracy measures, and even fMRI pre-

dictions that are directly comparable to those of the

participants [15–18].

In ACT-R, the human cognitive system is conceived as a

set of independent modules that are coordinated by a

central production system (Figure 1; see Anderson,

2007 [12], Chapter 2, for an extensive discussion on the

modularity of the mind. Note that although ACT-R

assumes strict modularity, recent work has clearly indicat-

ed that, for example, different areas of the prefrontal cortex

have a differential involvement in decision making). Two

modules are used to perceive the environment (aural,

visual) and two modules can be used to make responses

(manual, vocal). Furthermore, several modules process

information internally: the control module (instrumental

in cognitive control), declarative memory, and the problem

state, a module comparable to the focus of attention in

theories on working memory [19,20]. Crucially, each mod-

ule adheres to a set of precisely defined properties, which

are instantiated in the computational framework.

A possible drawback of ACT-R is that all modules func-

tion at the same (mostly symbolic) level. Sometimes, a

more detailed level of description is needed to account for

a specific task, even though it is still useful to simulate the

other processes (i.e., perception, action) at a fairly abstract

level. The basic idea proposed in this paper is that

cognitive architectures could be used as general frame-

works, and replace the default modules architecture with

more precise implementations, to explain detailed pat-

terns in the data while still simulating the complete task.

Integration of ACT-R and accumulator
models: RACE/A
The RACE/A extension to ACT-R [21] provides such an

integrative computational model. In default ACT-R, the

latency of retrieving an item from memory is determined

at the moment a retrieval request is specified, and as such

is a ballistic process. However, interference studies have

shown that if a competing stimulus is presented during the
Current Opinion in Behavioral Sciences 2016, 11:116–120
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Figure 1
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The ACT-R cognitive architecture (a) and its mapping to brain regions (b). The colors of the modules correspond to the colored squares in the

brain.

Source: Reprinted with permission from Borst and Anderson (2015) [15].
retrieval time, the eventual latency is modulated — falsi-

fying the ballistic nature of the default memory retrieval

mechanism. In RACE/A, ACT-R’s default declarative

memory retrieval processes, modeled as a deterministic

choice process (based on the current activation value), are

replaced by an accumulator process instantiated as a

Leaky Competitive Accumulator model (LCA, [22]).

The LCA model assumes that a choice (in this case, a

declarative memory retrieval) is the result of sequentially

sampling evidence in favor of various choice alternatives

(i.e., memory elements). In case of a competition be-

tween memory chunks, RACE/A predicts slower retrieval

times than standard ACT-R, in accordance with empirical

data (e.g., [23]). When there is no competition, RACE/A

predicts the same latency as the ACT-R declarative

retrieval model [21].

This integration of a lower-level model in a higher level

framework demonstrates the feasibility of this approach.

When modelers are interested in the low-level intricacies

of memory interference processes in cognitive perfor-

mance, they can integrate the RACE/A extension into

their models, but is memory interference is not relevant to

the task at hand, the simpler (and computationally faster)

default algorithms can be used.
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Integration of ACT-R and neural models of
interval timing
The passing of time plays an important role in cognitive

functioning, ranging from effects of impatience (e.g., [24])

to intricate temporal dependencies in the operation of

complex machinery, and vice versa [25]. Until recently,

computational models of behavior on cognitive tasks

often ignored the effects of the passing of time on

behavior, and computational models of interval timing

ignored that interval timing is almost never relevant in

isolation, but provides a supporting role for optimal

performance. Recently, we proposed a first extension

to ACT-R that could be used by cognitive models to

keep track of subjective time [26–28]. This model, based

on an information processing model of interval timing,

implements a highly abstract conceptualization of the

internal clock. Although this provides a useful approxi-

mation of human subjective timing, the high level of

abstraction renders this model extremely flexible, making

it almost impossible to falsify [29��]. To increase model-

ing rigor, we have recently started to replace the infor-

mation-processing account with a neurobiological model

of interval timing, the Striatal Beat Frequency (see for

discussions [30,31]) model. This model reserves an im-

portant role for the striatum, an assumption shared widely
www.sciencedirect.com
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although the functional interpretation sometimes differs

(e.g., [32]). Interestingly, initial work has demonstrated

that at a higher, function level the information processing

and biologically plausible model come to similar predic-

tions [29��]. However, the integration of SBF in a model-

ing framework such as ACT-R allows for testing much

more detailed predictions, such as the role of memory

consolidation on interval timing [33] or how interval

timing can influence perceptual processes by means of

predictive coding [34].

Conclusion
The question of the right level of abstraction has become

more prominent since recent cognitive modeling efforts

often aim to explain behavioral and neurophysiological

data in a single framework ([35], e.g., [36��]). This trend

entails that the data that a model should explain also

yields different levels. Consequently, the need to include

more (biological) detail in cognitive models becomes

more evident ([37], see the special issue: [38], or [39��]).

The distinction that we draw between the model com-

ponent of interest, and the remaining components raises a

new question. That is, why is it necessary to model those

aspects of behavior that one is not explicitly interested in

the first place? There are three reasons for this. Firstly, it

allows for generalization of mechanisms across domains.

As Newell (1973) argued before us, behavior is the result

of a single mind, and for this reason it is highly likely that

different behaviors are the result of unique interplays of a

limited set of mechanisms. Historically, this insight has

led to the development of cognitive architectures such as

ACT-R, but ultimately it could result in whole-brain

models ([40��], e.g., [41,42�,43,44]).

Secondly, modeling non-focal components of a task is

often useful to improve the model’s prediction of those

aspects of the data the cognitive model is focusing on. For

example, the ‘non-decision time’ parameter in accumu-

lator model is used to estimate the average duration of all

non-decision processes. Obviously, a more detailed mod-

el can explain more variance related to the non-decision

time, variance that without this extension could poten-

tially be attributed, erroneously, to the decision process.

Thirdly, there could be a situation in which a researcher

extends a pre-existing model to account for a novel

finding. In this case it could be useful to maintain model-

ing aspects that are not the focus of the new model, for

backwards compatibility, and future research in directions

other than the current one.

Yet, working at different levels of abstraction does intro-

duce new challenges. For example, although at higher

levels of abstraction certain mechanisms are assumed to

be completely independent, implementing these mecha-

nisms at the neurobiological level might demonstrate that
www.sciencedirect.com 
the mechanisms interact. For example, in the context of

ACT-R, production rule execution and interval timing are

assumed to be completely independent modules. How-

ever, more biologically plausible implementations of both

modules suggest that the neural substrate driving these

processes have a reasonable overlap. Although this vio-

lates the principles of modularity, it also provides new

avenues for further study, as an updated architecture

should acknowledge these interactions.

To conclude, although the first full-brain computational

models have been proposed, the tasks to which they can

be applied are still fairly limited, and the fit between

model performance and empirical data is often more at a

qualitative level. In the next decade, we expected there-

fore to see an increasing number of models in which

different modeling abstractions are mixed to obtain the

right balance between precision, neurobiological plausi-

bility, and inspectability.
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