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In this paper, a model-based analysis method for fMRI is used with a high-level symbolic process model.
Participants performed a triple-task in which intermediate task information needs to be updated frequently.
Previous work has shown that the associated resource – the problem state resource – acts as a bottleneck in
multitasking. The model-based method was used to locate the neural correlates of ‘problem state
replacements’. To analyze the fMRI data, we fit the computational process model to the behavioral data
and regressed the model's activity against the fMRI data. The brain region responsible for the temporary
representation of problem states, the inferior parietal lobule, and the brain region responsible for long-term
storage of problem states, the inferior frontal gyrus were thus identified. These results show that model-based
fMRI analyses can be performed using high-level symbolic cognitive models, enabling fine-grained
exploratory fMRI research.
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Introduction

If one wants to find the neural correlates of a theorized cognitive
process using the classical fMRI analysis method of cognitive
subtraction (e.g., Cabeza and Nyberg, 2000; Logothetis, 2008), the
first step is to translate the theory into suitable experimental
conditions. Then, an experimental condition placing demands on
the process of interest is compared to a control condition. The control
condition is the same as the experimental condition except for the
absence of the process under investigation. Brain areas that are more
active in the experimental condition than in the control condition are
assumed to be involved in the cognitive process of interest (e.g.,
Friston et al., 2007). However, it would be better to localize cognitive
functions in a more direct way. Especially for more complex tasks, the
translation of theory into experimental conditions is non-trivial. In
complex tasks, central cognitive processes are often used in all
experimental conditions (although with a different frequency or
temporal pattern), which makes it difficult to find a good control
condition that does not include the process of interest. A way to
address this problem and to localize brain functions in a more direct
way is to usemodel-based fMRI analysis (e.g., Gläscher and O'Doherty,
2010; O'Doherty et al., 2007).

In model-based fMRI analysis, information coming from a compu-
tationalmodel that simulates theprocessof interest is correlated against
fMRI data, showingwhich brain areas show activation patterns that are
consistent with the process of interest. This method has proven to be
very successful in locating brain areas involved in reinforcement
learning (e.g., Daw et al., 2006; Hampton et al., 2006; Haruno and
Kawato, 2006; Kim et al., 2006; Wunderlich et al., 2009). Parameters of
mathematical reinforcementmodelswere correlated against brain data,
showing which brain areas are involved in the reinforcement learning
process. In this paper we will use the model-based method with a
higher-level symbolic cognitive model. Such a higher-level model not
only simulates a particular process, but the whole task including, for
example, visual and motor processes. Instead of correlating model
parameters, we will correlate the presence and absence of activity of
cognitive resources against brain data, showing where the cognitive
resources are best represented in thebrain. Thisway,wewill investigate
whether predictions derived from a high-level process model can be
used for model-based fMRI, and whether this combination allows for
more direct exploratory fMRI analyses.

The problem state resource

We will use model-based fMRI to analyze data of a relatively
complex experimental paradigm, which was developed to investigate
the neural correlates of the ‘problem state resource’ (Borst et al.,
2010a). The problem state resource is defined as the part of working
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memory that is available at no time cost (Anderson, 2005), as opposed
to other elements in working memory that take time to retrieve and
use (e.g., McElree, 2001). It is normally used to represent intermediate
information in a task, and can at most contain one chunk of
information (Borst et al., 2010b). Thus, the concept of a problem
state resource is comparable to the focus of attention in working
memory theories that pose an extremely limited focus of attention
(e.g., Garavan, 1998; McElree, 2001). The concept of a central problem
state resource originates from a series of neuroimaging experiments
by Anderson and colleagues, who found that activity in the posterior
parietal cortex correlates with the number of transformations of
mental representations (Anderson, 2005; Anderson et al., 2003, 2005;
Sohn et al., 2005).

Although Anderson and colleagues assumed on functional grounds
that the problem state resource contains at most one chunk of
information, we have recently provided empirical evidence for this
assumption. In a series of experiments, we showed that the problem
state resource is a source of interference when required by multiple
tasks at the same time (Borst et al., 2010b; Borst and Taatgen, 2007). A
computational cognitive model was developed to account for the
observed multitasking interference. The basic assumption of the
model is that when multiple tasks require a problem state, the
contents of the problem state resource have to be replaced on each
switch between tasks. That is, on every alternation the problem state
of the previous task is stored in declarative memory, while the
problem state of the current task is recalled from declarative memory
and restored to the problem state resource. The model incorporating
these time-consuming and error-prone problem state replacements
provided a good match with the interference effects in the data. The
current experiment was performed to find the neural correlates of the
resources that are used by the model, which are, apart from the
problem state resource, associated with vision, manual action, and
declarative memory.

Materials and methods

Behavioral experiment

To locate the neural correlates of the model's resources, we used a
triple-task design in which participants alternated between solving
subtraction problems and entering text, while performing a listening
comprehension task simultaneously (Fig. 1 shows a screenshot of the
experiment). Both the subtraction task and the text-entry task had
two versions: an easy version that did not require maintenance of a
problem state and a hard version that did.

In the subtraction task participants had to solve 10-column
subtraction problems. Although participants were shown only one
column at a time to minimize eye and head movements, participants
were trained to perceive these columns as part of a full 10-column
Fig. 1. Screenshot of the experiment.
subtraction problem. In the easy version the upper term was always
larger or equal to the lower term: no carrying was required. However,
in the hard version participants had to carry in 6 out of the 10
columns; thus, participants had to remember whether a carry was in
progress while performing the text-entry task.

In the text-entry task participants had to enter 10-letter strings. In
the easy version a single letterwas shown,which theparticipants had to
enter. After solving one column of the subtraction problem, a new letter
was shown, etc. In the hard version, a complete 10-letter word was
shown once at the start of a trial, but as soon as the participant entered
the first letter, the word disappeared and had to be entered letter by
letter without feedback. Thus, in the hard version of the text-entry task
participants had to remember what word they were entering.

Because participants had to alternate between the tasks after every
number and letter, they had to keep track of whether a carry was in
progress and what word they were entering (and the position within
the word) in the hard versions of the tasks while giving a response on
the other task. Supported by results from previous experiments (Borst
et al., 2010b), we assumed that participants used their problem state
resource to keep track of the absence or presence of a carry and the
words, but did not use this resource in the easy conditions. In half of
the trials participants also had to perform a listening comprehension
task. As the listening task is not the focus of the current paper, we
collapsed over this task if not mentioned otherwise. A detailed
description of theMethods and discussion of the setup can be found in
Borst et al. (2010a).

fMRI procedures and analysis

The fMRI data were collected with a Siemens 3T Allegra Scanner
using a standard radio frequency head coil. Each functional volume
existed of 34 axial slices (3.2 mm thickness, 64×64 matrix,
3.125×3.125 mm per voxel), acquired using echo-planar imaging
(2000 ms TR, 30 ms TE, 79° flip angle, 200 mm field of view, 0 slice
gap, with AC-PC on the 11th slice from the bottom). Functional
acquisition was event-related; scanning onset was synchronized with
stimulus onset. Anatomical images were acquired using a T1-weighted
spin-echo pulse sequence at the same location as the functional images
but with a finer resolution (3.2 mm thickness, 200 mm field of view,
256×256 matrix, 0.78125×0.78125 mm in-plane resolution).

The data were analyzed using SPM5 (Wellcome Trust Centre for
Neuroimaging, London). This included realigning the functional
images, coregistering them with the structural images, normalizing
the images to the MNI (Montreal Neurological Institute) ICBM 152
template, and smoothing themwith an 8 mm FWHMGaussian kernel.

Participants

Thirteen students of CarnegieMellon University participated in the
experiment. The data of three participants were excluded (one
participant fell asleep in the MRI scanner, one ignored the listening
task, and with one fMRI recording problems were encountered)
leaving 10 complete datasets (3 women, average age 21.9, range 19–
28, right-handed). All participants had normal or corrected-to-normal
vision and normal hearing. Informed consent as approved by the
Institutional Review Boards at Carnegie Mellon University and the
University of Pittsburgh was obtained before the experiment.
Participants received US$ 100 compensation.

Results

Behavioral results

All reported F- and p-values are from repeated measure analyses of
variance (ANOVAs), effects were judged significant when a .05
significance level was reached, and accuracy data were transformed
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Fig. 2. Behavioral results. RT = response time, E/E = easy-easy, E/H = easy-hard, etc.,
error bars indicate standard error.

Table 1
ANOVA results of the behavioral data. Interaction is the interaction between
Subtraction Difficulty and Text-Entry Difficulty.

Source Response times Accuracy

F(1,9) p ηp
2 F(1,9) p ηp

2

Text-entry task
Subtraction 32.13 b.001 .78 5.20 .049 .37
Text-entry 5.62 .042 .38 44.27 b.001 .83
Interaction 12.10 .007 .57 6.38 .03 .41

Subtraction task
Subtraction 83.94 b.001 .90 96.33 b.001 .91
Text-entry 5.36 .046 .37 4.04 .075 .31
Interaction 2.66 .137 .23 21.16 .001 .70

2 That the interaction for the response times of the subtraction task in the current
experiment failed to reach significance is probably a power issue, as previously

139J.P. Borst et al. / NeuroImage 58 (2011) 137–147
using an arcsine transformation before performing ANOVAs. Outliers in
response timeswereeliminatedbymeansof a two-stepprocedure. First,
response times faster than 250 ms and slower than 10,000 ms were
removed. Then,data exceeding3 standarddeviations fromthemeanper
condition per participant were excluded. Overall, 2.4% of the data was
discarded. First responses on both tasks were removed per trial.

As the listening task is not the focus of the current paper, we
collapsed over levels of difficulty for this task if not mentioned
otherwise.1 Response time on the text-entry task was defined as the
time between entering a digit in the subtraction task and entering a
letter in the text-entry task, while a response time on the subtraction
task was defined as the time between entering a letter in the text-entry
task and entering a digit in the subtraction task. Fig. 2(a) shows the
response times on the text-entry task (left) and the subtraction task
(right); Table 1 contains the results of the ANOVAs. The interaction
between Subtraction Difficulty and Text-Entry Difficulty was significant
in the text-entry task, as were bothmain effects. Interestingly, response
times decreasedwhen the text-entry taskwas hard but increasedwhen
the subtraction task was hard. We have come across this effect before
(e.g., Experiment 2 in Borst et al., 2010b). It can be explained by
assuming that in the hard conditions participants knowwhatword they
are entering and thus do not need any additional visual input, but in the
easy condition participants first have to look at the screen to see which
letter they have to enter next. Our computational model (Borst et al.,
2010b) fitted these results. In the subtraction task the interaction effect
failed to reach significance, but bothmain effects did: a small increase of
response timeswhen text entrywas hard, and a large increasewhen the
subtraction task was hard.

Fig. 2(b) shows the accuracies, in which the interaction effects
between Subtraction Difficulty and Text-Entry Difficulty reached
significance for both tasks. The main effects of the tasks were also
significant: Subtraction Difficulty for the subtraction task and Text-
Entry Difficulty for the text entry task.
1 Please note that the listening task has hardly any influence on the subtraction and
text-entry results, see Borst et al. (2010a, 2010b).
Based on similar effects on response times and accuracy we
previously argued that the results of this type of experiment support
the idea of a problem state bottleneck (Borst et al., 2010b). In the easy
tasks, no intermediate results need to be stored in the problem state
resource. If a task is hard, accurate performance on a task requires
storing intermediate results. Although participants had to alternate
between tasks, the combination of one hard and one easy task is not
problematic, since the problem state resource is not overwritten
during the easy task. If, however, both tasks are hard, both tasks
require the use of the problem state resource. Therefore, on each step
in the task in the hard-hard condition the problem state resource has
to be swapped out: on each step an old problem state is retrieved from
declarative memory and restored to the problem state resource,
overwriting the problem state of the other task. This results in the
typically observed over-additive interaction effects.2 To test whether
this effect can indeed explain the observed data, we developed a
computational cognitive model, which we will discuss in the next
section.
Cognitive model

To account for the data, we used a high-level symbolic cognitive
model (Borst et al., 2010b), developed in the cognitive architecture
ACT-R (e.g., Anderson, 2007). Most important for the task at hand are
theproblemstate resourceand resources associatedwithvision,manual
actions, and declarative memory. The model uses the visual resource to
perceive the stimuli; this resource is assumed to do focused processing
of attended stimuli. Themanual resourcewasused tomake responses; it
operates the ‘hands’ of themodel. The declarativememory resourcewas
used to retrieve facts (e.g., ‘5−2=3’). Facts in ACT-R have a certain
activation level, which represents frequency and recency of use (e.g.,
Anderson and Schooler, 1991). This activation level determines the
probability of retrieving a fact, and the speed with which a fact is
retrieved. For example, a simple subtraction fact such as ‘5−2’ is
probably used very often, and has therefore a high activation level. In
contrast, ‘17−8’ will have been used less often in the past, and will
therefore have a lower activation level and take a little more time to
retrieve. The problem state resource is used to maintain intermediate
information and is therefore of particular interest for the current paper.
Information in the problem state resource can be accessed at no time
cost, but it takes 200 ms to replace it (e.g., Anderson, 2005). Problem
states that are discarded from the problem state resource are still
available in declarativememory, and can be retrieved and restored later.
reported experiments showed significant effects (Borst et al., 2010b). Moreover, an
extensive behavioral pilot experiment with the exact same experimental setup as the
current experiment also showed both interactions. We report the results of this pilot
experiment in the Appendix.

image of Fig.�2


Fig. 4. Stimulus functions and convolved stimulus functions for the model-based
analysis method, for four cognitive resources: the problem state resource, declarative
memory, vision, and the manual motor resource. Easy-Hard etc. = Easy Subtraction –

Hard Text-Entry.
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Using a cognitive architecture makes it meaningful to model all
components relevant for a task such as visual, manual, and declarative
memory processes (e.g., Cooper, 2007; Newell, 1990): the architec-
ture provides the time it takes to move the mouse or retrieve a fact
from memory, and as such the time courses of when the different
resources are used. These elements of the architecture have received
extensive experimental support (e.g., Anderson, 2007 and see http://
act-r.psy.cmu.edu/).

To account for multitasking aspects the model uses threaded
cognition theory (Salvucci et al., 2009; Salvucci and Taatgen, 2008,
2011). According to threaded cognition theory, multiple tasks can be
active concurrently, but a cognitive resource can only be used by one
task at a time. Thus, the problem state resource can only maintain
information for a single task. However, in the hard-hard condition of
the present experiment, a problem state is required for both tasks. The
problem state then has to be replaced on each step of a trial
(participants had to alternate between the subtraction and text-entry
tasks), which takes time (a declarative retrieval and 200 ms problem
state restoration, see Borst et al., 2010b for details). In contrast, in the
easy-easy condition the problem state resource is not used at all, while
in the easy-hard and hard-easy conditions it is only used for one task.
Because problem states have to be restored and replaced at each step
in the hard-hard condition, this leads to an over-additive interaction
effect on response times. Furthermore, because the model sometimes
retrieves an incorrect problem state from declarative memory, it also
gives an explanation for the interaction effect on accuracy.

Previously, the model was fitted to data of Experiment 1 in Borst
et al. (2010b, p. 370), and shown to give a good account of the data
(R2 for response times and accuracy approached 1). Subsequently, the
model was used to predict the data of Experiments 2 and 3 in the same
paper, showing that the model was capable of generalizing to
different datasets. Experiment 3 in that paper also included the
listening task; the model fit well to the data of all three tasks in that
dataset. We use the exact same model in the current paper to analyze
the fMRI data. Thus, the model takes the small influence of the
listening task on the timing of the other tasks into account. The
listening task itself, at least for the purposes of the current model, only
requires use of the declarativememory resource, and does not use any
of the other resources. However, we analyzed declarative memory
only in the non-listening condition. An extensive description of the
(lack of) influence of listening can be found in Borst et al. (2010b).

Model-based fMRI analysis — method

Wewill now turn to themodel-based fMRI analysis data to locate the
model's resources. For the classical fMRI analysis method of cognitive
subtraction, one typically defines stimulus functions that correspond to
the experimental conditions (e.g., Friston et al., 2007). These stimulus
functions are entered into a general linear model (GLM), which shows
brain areas in which activity correlates with the conditions of the
experiment. Stimulus functions used for classical fMRI analyses are
coarse in the sense that they assume stable activation during a complete
Fig. 3. Demonstration of the linear transformation that was used to line up the model
data with the participants' data.
trial — an assumption that often does not hold. During a trial in the
current experiment, for example, participants solve a 10-column
subtraction problemand enter a 10-letterword. These processes involve
multiple fixations, manual actions, memory retrievals, and continuous
maintenance and updating of problem states, and can thus not be
characterized by constant activation throughout a trial. To construct
more detailed stimulus functions, we fitted the cognitive model to the
data, and entered the activity of the model's resources as stimulus
functions into the general linear model. This method takes into account
whenandhowoften a resource is usedduringa trial, insteadof assuming
constant activation.

To approximate the cognitive processes at trial level, we ran the
model for each participant on the same stimuli as the participant
received, in the same order, including all non-experimental compo-
nents, such as fixation and feedback screens. To further improve the
timing of the model, we lined up the model's responses with the
participant's responses. Fig. 3 gives a schematic overview of the
procedure. The first line represents data, with key-presses as dashed
lines. The second line shows a model simulation of these steps. As the
model is regressed directly against brain data it is important to have a
correct time mapping between model and data (Gläscher and
O'Doherty, 2010): it does not make sense to compare a fixation in
the model to a key-press in the data. Therefore, we used a linear
transformation to line up the key-presses of the model to the key-
presses of the participants. Line 3 in Fig. 3 shows the result: the
transformation causes Step 1 of the model to increase a little in length
and Step 2 to decrease in length. Not only the key-presses of the
model are shifted, but also cognitive resource activity within a step is
shifted and in- or decreased in length (represented by the gray boxes
in Fig. 3). The resulting activity for four cognitive resources during
four different trials in the experiment is shown as gray lines in Fig. 4.

As the next step, the stimulus functions were convolved with a
hemodynamic response function. The convolved stimulus functions
are displayed in black in Fig. 4. For model-based fMRI analysis it is
crucial that the different resources of the model make different
predictions, because otherwise different resources cannot be distin-
guished. Fig. 4 shows clearly different patterns between the problem
state resource and declarative memory3 on the one hand, and the
3 The fact that there is hardly anyBOLD responsepredicted in the easy–easy condition of
the declarative memory resource is caused by the very short (~10 ms) retrievals in that
condition (only subtraction facts under 10 have to be retrieved, e.g., 5−2=3).

http://act-r.psy.cmu.edu/
http://act-r.psy.cmu.edu/
image of Fig.�4


Table 2
Correlations between the different regions and predictions over all data points. Please
note that correlations with declarative memory were calculated only on the non-
listening data, because that was the data that was used for the model-based analysis.

Correlation between: Prediction Data

Problem state — declarative memory .69 .65
Problem state — vision .51 .23
Problem state — manual .43 .44
Declarative memory — vision .22 .35
Declarative memory — manual .21 .62
Vision — manual .93 .38
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visual and manual resources on the other hand. It is important to note
that problem state activity of the model relates to changing the
contents of the problem state resource, not to passive maintenance of
information. The problem state resource and declarative memory are
used most in the hard-hard condition because of repeated problem
states replacements, while they are used less in the easier conditions.
The visual and manual resources show a different pattern: they are
used for roughly the same amount of time in all conditions, but their
activity is spread over a larger period of time in the harder conditions,
resulting in a lower BOLD prediction (the same amount of visual
information has to be processed and the same amount of key-presses
have to be made, but as response times are higher more time is
available in the more difficult conditions). The problem state resource
and declarative memory can also be distinguished from each other:
declarative memory is used often in the hard subtraction – easy text-
entry condition (many subtraction facts have to be retrieved from
memory to process the carries), resulting in high BOLD predictions.
The problem state resource only shows intermediate BOLD levels in
this condition (see Fig. 4). The visual and manual stimulus functions,
on the other hand, are very similar. Table 2 shows the inter-
correlations between the stimulus functions (the prediction column
shows the correlations between the predictions). The correlation
between the visual and the manual resource is .93, which makes it
difficult to identify separate areas for these resources.

These stimulus functions were then entered one by one into a GLM
to see which brain areas correlated with the predicted activity of the
resources. Each stimulus functionwas accompanied by its ‘opposite’: a
function showing when the resource was not active.4 Feedback
screens and the screens indicating conditions were also entered into
the GLM; fixation screens formed the baseline. Contrast images were
made for the individual participants, and entered into second level
random-effect group analyses.
Model-based fMRI analysis — results

Fig. 5 shows the results for (a) the problem state resource, (b)
declarative memory, (c) vision, and (d) the manual resource. The
column on the left shows the regions that were identified by the
model-based fMRI analysis. A threshold of pb .01 (FWE-corrected)
and 100 contiguous voxels was applied to the results, with the
exception of declarative memory, for which a threshold of .05 was
used (FWE-corrected; see below for an explanation). Crosshairs in
Fig. 5 are located at the most significant voxel, except for the manual
resource and the visual resource (see below). The xyz-coordinates
indicate the most significant voxel in MNI-coordinates in the located
region. The white squares show the existing mapping between ACT-
R's resources and brain regions (e.g., Anderson, 2007), which can be
4 While the ‘non-activity’ of a resource is implicitly modeled by its stimulus function
(1 = resource active, 0 = not active), we added a non-activity regressor to distinguish
it from the fixation screens. Because non-activity often takes place in between activity
of a resource, due to the convolution with the HRF there is usually some activity
present on these scans, unlike on the fixation scans. To account for this, we added
‘non-activity’ as a separate regressor.
used for confirmatory analyses (e.g., Anderson et al., 2008; Borst et al.,
2010a).

The area that corresponded best to problem state activity was
located in the inferior parietal lobule, around the intraparietal sulcus.
Declarative memory also showed activation in that area, but the best
fitting area was located around the inferior frontal gyrus. The
threshold for declarative memory was increased to pb .05.5 This was
necessary due to a more limited dataset, as we only used the trials in
which the listening task was not present. If we included the trials with
the listening task, the best fitting area for declarative memory
coincided with the aural regions, because the model is not able to
separate auditory processing of the incoming speech and the
subsequent updating of declarative memory.

Fig. 5(c) and (d) show the results of the visual and manual
resources. As discussed above, the stimulus functions were very
similar as moving the mouse in the model is almost always
accompanied by moving the eyes, and this was reinforced by the
convolution with the HRF. It was therefore not surprising that the
analyses yielded very similar results. The most significant area for
both was the occipital visual area, but both also showed a fitting area
in the motor cortex. This area was a little larger for the manual
resource than for the visual resource, and as we know that manual
actions are represented in themotor cortex, we centered the results of
the manual resource on that area. The crosshairs of the visual area
were moved down 13 mm, to enable comparison with ACT-R's
predefined region (however, the coordinates indicate the most
significant voxel).

The middle column of Fig. 5 shows the stimulus functions that
were entered into the GLM, averaged per condition per trial. Thus,
what is shown here is the activity of the model convolved with the
BOLD response over the course of entering 10 numbers in the
subtraction task and entering 10 letters in the text-entry task. The x-
axis represents time in scans (1 scan=2 s). The y-axis shows % BOLD
change (the height of the curves is not important for the GLM, only the
relativemagnitude of the curves). The right column of Fig. 5 shows the
measured BOLD response in the 100 most significant voxels for the
located regions. ANOVA results of the area under the curve (reflecting
total activation in a trial, see e.g., Anderson, 2005; Stocco and
Anderson, 2008) are reported in Table 3. In general, the graphs show
that the model-based fMRI method is able to identify patterns of
activation in the brain that are very similar to the predictions of the
model. Where for the problem state and declarative memory
resources the hard-hard condition shows most activation, this is not
the case for the manual and visual resources,6 as predicted by the
model. On the other hand, the fit is not perfect. For instance, while the
model predicted no activity at all in the easy-easy condition for the
problem state resource, this was not found in the located region. This
indicates that the model-based analysis is not limited to identifying
regions with a perfect fit, but locates regions that correlate
significantly with the model predictions.
Discussion

The model-based method was able to find neural correlates
corresponding to the cognitive resources of the model. Instead of
using the experimental conditions as a basis for the analysis, the
model-based method allows for assessing directly which parts of the
brain correlate significantly with model predictions. In this paper we
have shown that this is possible with a detailed high-level symbolic
5 If we decrease the p-values to .001 the same areas are found for all cognitive
resources (except that the number of consecutive voxels had to be lowered to 25 for
declarative memory).

6 The graph for declarative memory ends earlier than the graphs of the other
resources because only trials without the listening task are taken into account; these
trials are shorter than the trials with the listening task.
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Fig. 5. Results of the model-based analysis method, for (a) the problem state resource, (b) declarative memory, (c) vision, and (d) the manual motor resource. (a), (c), and (d) with a
Family Wise Error threshold of pb .01 and 100 contiguous voxels, (b) with an FWE threshold of pb .05 and 100 contiguous voxels. White squares represent predefined mappings
between ACT-R's resources and the brain. Crosshairs are centered at themost significant voxel, except for themanual, which is centered on themost significant voxel in the cluster in
the motor cortex and for the visual, which was moved down 13 mm to enable comparison to the predefined region of ACT-R. The middle column shows the stimulus function that
was entered into the GLM, averaged per condition and trial, the right column the measured BOLD response in the located area.
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cognitive model (as compared to the more low-level mathematical
models that have been used previously; e.g., Daw et al., 2006;
Gläscher and O'Doherty, 2010; Hampton et al., 2006; Haruno and
Kawato, 2006; Kim et al., 2006; O'Doherty et al., 2007; Wunderlich et
al., 2009). Instead of focusing on one process, using a high-level model
integrated in a cognitive architecture allows for analyzing all cognitive
processes that are involved in the task, and thus localizing multiple
resources in one experiment. Furthermore, because the analysis is

image of Fig.�5


Table 3
ANOVA results of the area under the curve in the located regions. Interaction is the
interaction between Subtraction Difficulty and Text-Entry Difficulty.

Source F(1,9) p ηp
2

Problem state
Subtraction 121.24 b.001 .93
Text-entry 23.07 b.001 .72
Interaction b1 – –

Declarative memory
Subtraction 52.25 b.001 .85
Text-entry 15.76 .003 .64
Interaction b1 – –

Vision
Subtraction 43.51 b.001 .83
Text-entry b1 – –

Interaction 4.66 .059 .34

Manual
Subtraction 6.81 .028 .43
Text-entry b1 – –

Interaction 2.06 .185 .19
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based on a cognitive model, the fMRI results are grounded in the
theoretical framework the model was built on, providing a functional
explanation of the results (Gläscher and O'Doherty, 2010; O'Doherty
et al., 2007).

The experiment was set up to test a hypothesis related to the
problem state resource. Because activity in the model is related to
changes of the problem state resource, the located region represents
these changes, and not storage of problem states per se. The analysis
showed that themodel's problem state activity corresponded best to a
region focused in the inferior parietal lobule, but also included parts of
the superior parietal lobule and the intraparietal sulcus. The
intraparietal sulcus has been linked previously to ACT-R's problem
state resource (e.g., Anderson, 2005; Anderson et al., 2003, 2005; Sohn
et al., 2005). While it is most often referred to in connection with
spatial working memory, it is also known to be involved in object and
verbal working memory (e.g., LaBar et al., 1999; Smith et al., 1998;
Wager and Smith, 2003), functions that are attributed to the problem
state resource.

Use of declarative memory also correlated with activity in the
identified problem state region, but the best fitting area was the
inferior frontal gyrus, slightly anterior to the standard ACT-R region
for declarative memory (e.g., Anderson, 2007; Anderson et al., 2008).
This region is known to be involved in memory retrieval (e.g., Cabeza
et al., 2002; Fletcher and Henson, 2001; Wagner et al., 2001). More
interestingly, if we lower the significance threshold, it becomes clear
(a) Interaction Analysis (b
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Fig. 6. Results of traditional fMRI analysis methods, for (a) a classical interaction analysis, an
thresholded with (a) FWE pb .05 and (b) FWE pb .01 and 100 contiguous voxels.
that both areas are part of a larger fronto-parietal network, a network
that is often implicated in working memory research (e.g., Collette et
al., 2006; Collette and Van der Linden, 2002). While both declarative
memory and problem state activity are associated with functions of
working memory, the current analysis implies that retrieving
information is done via an area around the inferior frontal gyrus,
while maintaining and updating working memory are performed in
the parietal regions.

Model-based fMRI versus traditional analysis methods

We have shown that model-based fMRI makes it possible to
directly locate the neural correlates of model resources, and therefore
allows for fine-grained exploratory fMRI analyses. However, does it
perform better than traditional methods?While there is no traditional
method that allows for direct localization of model components, we
used two existing methods to localize the over-additive interaction
effect that was predicted by the model's problem state resource (see
the BOLD prediction in Fig. 5(a), middle column), and compared the
results of these methods to the results of the model-based method.
First, we used a classical cognitive subtraction approach to find an
interaction effect; when that failed we tried a parametric method that
is somewhat similar to the model-based method.

For the classical cognitive subtraction analysis we defined a
stimulus function for each condition in the experiment. Subsequently,
the four stimulus functions were convolved with a hemodynamic
response function and entered into a general linear model. We then
tested for an over-additive interaction effect of Subtraction and Text-
Entry Difficulty by contrasting the difference between the hard-hard
condition and the hard-easy condition against the difference between
the easy-hard and the easy-easy condition (i.e. (hard-hard – hard-easy)
– (easy-hard – easy-easy); e.g., Friston et al., 2007). The results are
shown in Fig. 6(a): no voxels crossed the FWE significance threshold
of .05. Thus, the traditional cognitive subtraction method was unable
to find a region that showed the predicted interaction effect, and
could not be used to locate the neural correlates of the problem state
resource.

We then used a method that is more similar to model-based fMRI: a
parametric analysis (e.g., Büchel et al., 1996; Cohen, 1997). For this
method we defined one stimulus function for all conditions in the
experiment, and then specified a parametric model, with 0 for the easy-
easy condition, 1 for the hard-easy and easy-hard conditions, and 3 for
the hard-hard condition. Thismethod is comparable to themodel-based
method, except that the amplitudes of the different conditions have to
be specified by the researcher, instead of the model providing these
estimates (note that the model also predicts a detailed pattern within
each trial and differences between participants, see Section 4.2 below).
0
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d (b) a parametric modulation analysis (see the main text for details). The results were



Fig. 7. Example of four different stimulus functions, shown for one session of one participant for the problem state resource. These stimulus functions were used to test which
properties of the stimulus functions were important for the model-based analysis. Stimulus function (a) only contains effects of condition, (b) of condition and participant, (c) of
condition, participant, and trial, and (d) of condition, participant, trial, and of cognitive resource usage within a trial. While it is clear that (d) is different from (a)–(c), the differences
between (a)–(c) are minor.
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The results are shown in Fig. 6(b): while the problem state region was
found, visual and motor areas also showed significant activation, with
the most significant voxel being located in the visual cortex. Thus, the
parametric method yielded less specific results than the model-based
method, and, moreover, indicated a seemingly incorrect region
(compared to previous results, e.g., Anderson et al., 2008).

Model-based fMRI thus outperformed these two traditional
methods. There are obviously other possibilities to analyze the data,
but, to our knowledge, none of these options can directly show the
neural correlates of resources in a model. Additionally, model-based
fMRI allows for locating multiple resources in one experiment,
without having to adapt the experimental design for each resource,
which is the case for traditional methods. In the next section we
performed a detailed analysis to investigate what enabled the model-
based fMRI analysis to locate the model's resources.
7 Effects of participant are caused by differences in speed between participants:
some participants are slower in, for example, the easy-easy condition, resulting in a
lower BOLD prediction (resource activity is spread more over the trial). However, all
trials of the same condition of one participant have the same predicted BOLD
amplitude.

8 Effects of trial originate in the response times on a particular trial: for instance, for
a quick trial with the same number of key-presses as a slow trial, a higher BOLD
response is predicted for the manual motor resource.

9 This temporal pattern stems from the time course of cognitive resource usage
within a trial, as explained in the ‘fMRI — model-based method’ section.
What makes the model-based method powerful?

To arrive at the reported results, the model-based method uses a
computational cognitive model to look in a more informed way at
fMRI data. The model-based stimulus functions not only contain
differences between conditions (as in classical fMRI analyses), but also
differences per participant and trial, and even a detailed temporal
pattern within each trial (Fig. 4). To assess what drives the results, we
compared a series of models that incorporate increasing levels of
detail. First, we constructed four different stimulus functions for each
cognitive resource (Fig. 7). Please note that we used stimulus function
7(d) for the model-based analysis described above; (a)–(c) are only
used for investigating which level of detail drives the results. The first
stimulus function, 7(a), contains differences per condition, but was
the same for all trials in a condition and all participants. The second
stimulus function, 7(b), also contained differences per participant,7

while the third and the fourth stimulus functions in addition
contained effects of trial.8 The fourth stimulus function differed
from the third with respect to the temporal detail within a trial: the
first three stimulus functions are smooth, while the fourth has a very
detailed temporal structure9 (i.e., this is the stimulus function that
was used for the model-based analysis reported earlier in this paper).
Fig. 7 illustrates the four different stimulus functions (note that here a
stimulus function is shown for one resource, with different levels of
detail; in contrast, Fig. 4 shows four stimulus functions for four
different resources).

These stimulus functions were then entered one by one into
linear-mixed-effects models (e.g., Baayen et al., 2008) with the
stimulus function as a fixed effect and participant as a random effect.
For each cognitive resource we constructed two LMEs, one to fit the
stimulus function to the BOLD response in the best fitting voxel, and
one to fit the average BOLD response in the 100 best fitting voxels. All
stimulus functions correlated significantly with the data. The results,
in the form of the log-likelihood of the fit, are listed in Table 4 (best
fitting voxel) and Table 5 (average of the 100 best fitting voxels). As



Table 4
Log-likelihood of linear-mixed-effects models indicating which properties of the
stimulus functions are important in the model-based analysis, for the best fitting voxel
per cognitive resource. Each stimulus function is more detailed than the previous one,
e.g., the stimulus function ‘Participant’ also includes effects of condition. See the main
text for details.

Stimulus function Problem state Declarative memory Vision Manual

Condition −36,743 −14,463 −44,476 −33,163
Participant −36,733 −14,459 −44,480 −33,139
Trial −36,771 −14,444 −44,492 −33,138
Within-trial −37,029 −14,701 −44,848 −33,676
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can be seen in these tables, for none of the resources was it helpful to
include the temporal pattern within a trial. For declarative memory
and the manual resource the model made correct predictions on a
trial-by-trial level, for the problem state resource and vision on a
condition level (for the 100 best fitting voxels; for the problem state
resource on a participant level for the best fitting voxel). Based on this
we can conclude that it is useful to include trial-by-trial differences in
the model-based stimulus functions, but not the temporal pattern
within a trial (either because the model predictions are not precise
enough within a trial, or because the data is too noisy). Thus, the
strength of the model-based analysis lies in the predicted amplitude
levels per trial. By providing the analysis with these precise a priori
estimates of the amplitudes of the BOLD response, the model allows
for a better identification of the regions involved in the task than is
possible with classical fMRI analysis methods.
ACT-R

While themodel-based analysis can be usedwith different kinds of
models, the current paper focuses on a model implemented in the
ACT-R architecture. ACT-R only predicts when and for how long a
cognitive resource is used, and not the intensity withwhich a resource
is used. For instance, it is conceivable that an automatized movement
takes as much time as a novel movement, but less effort. While this
can be seen as a shortcoming, accounting for intensity would
introduce extra free parameters, weakening the current predictive
power of the model, as we would have to fit them post-hoc. On the
other hand, if those new parameters were to explain a significant
portion of the variance in the experimental data, they would increase
the generalizability of the model (see e.g., Pitt and Myung, 2002).

If we compare the model-based fMRI method to the standard
method of relating ACT-R models to neuroimaging data using
predefined regions (Anderson, 2007; Anderson et al., 2008; see
Borst et al., 2010a for a region-of-interest analysis of the current task),
two things become clear: First, the areas that were located with the
model-based analysis are very close to the predefined regions
normally associated with ACT-R, which are shown as white squares
in Fig. 5. Only the visual area is different: the located region overlaps
Table 5
Log-likelihood of linear-mixed-effects models indicating which properties of the
stimulus functions are important in themodel-based analysis, for the average of the 100
best fitting voxels per cognitive resource. Each stimulus function is more detailed than
the previous one, e.g., the stimulus function ‘Participant’ also includes effects of
condition. See the main text for details.

Stimulus function Problem state Declarative memory Vision Manual

Condition −28,398 −11,537 −39,221 −29,227
Participant −28,402 −11,534 −39,231 −29,214
Trial −28,426 −11,516 −39,257 −29,209
Within-trial −28,823 −11,849 −39,736 −29,650
with V1, while the predefined ACT-R region is located in the fusiform
gyrus. Thus, it seems that lower level vision actually fits better with
the ACT-R predictions than the slightly higher-level visual processing
of the fusiform gyrus. Second, the strength of the model-based
method lies in its exploratory nature. Using this method, we can not
only validate cognitive models, but also determine which brain
regions are involved in complex tasks.
Conclusion

In this paper we have shown that the technique of model-based
fMRI can be used in combination with a high-level symbolic process
model. The model-based analysis method uses the results of a
computational cognitive model to look in a more informed way at
fMRI data: it shows areas in the brain that correlatewith activity of the
model. Thismethod is especially useful for cognitive functions that are
hard to discriminate in a pure subtraction-based design, for instance
working memory storage and updating: These processes go hand-in-
hand, which makes it difficult to find experimental conditions with
one process but without the other. However, when a good model is
available, these processes would yield different stimulus functions,
which could in turn lead to different regions in the fMRI analysis, or at
least different focal points in networks of activity. Because the model-
based analysis works by refining the stimulus function, the method
can be used with all modeling techniques that yield information that
is more detailed than the condition structure of an experiment, which
is used as the stimulus function in classical fMRI analyses.
Appendix A. Behavioral results outside the scanner

Here we report the results of the pilot experiment that we ran
outside the fMRI scanner. This experiment has exactly the same setup
as the experiment that is reported in the main text.
Participants

Twenty students of Carnegie Mellon University participated in the
experiment (11 women, average age 20.6, range 18–23). All
participants had normal or corrected-to-normal vision and normal
hearing. Informed consent as approved by the Institutional Review
Boards at Carnegie Mellon University and the University of Pittsburgh
was obtained before the experiment. Participants received US$ 10 for
performing the experiment.
Results

Outliers in reaction times were eliminated by means of a two-step
procedure. First, response times faster than 250 ms and slower than
10,000 ms were removed. Then, data exceeding 3 standard deviations
from the mean per condition per participant were excluded. Overall,
2.0% of the data was discarded. Accuracy data were transformed using
an arcsine transformation before performing ANOVAs.

Fig. A1(a) shows the response times on the text-entry task (left)
and the subtraction task (right); Table A1 contains the results of the
ANOVAs. The interaction between Subtraction Difficulty and Text-
Entry Difficulty was significant in both tasks. Furthermore, Subtrac-
tion Difficulty had a significant effect on the response times of the text
entry task, while both Subtraction Difficulty and Text Entry Difficulty
had a significant effect on the response times of the subtraction task.

Fig. A1(b) shows the accuracies, in which the interaction effect
between Subtraction Difficulty and Text-Entry Difficulty reached
significance for the text entry task, but not for the subtraction task. All
main effects reached significance.
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Fig. A1. Behavioral results in the pilot experiment. RT = response time, E/E = easy-easy, E/H = easy-hard, etc., error bars indicate standard error.

Table A1
ANOVA results of the pilot experiment. Interaction is the interaction between
Subtraction Difficulty and Text-Entry Difficulty.

Source Response times Accuracy

F(1,19) p ηp
2 F(1,19) p ηp

2

Text-entry task
Subtraction 69.47 b.001 .79 16.64 b.001 .47
Text-entry b1 – – 50.72 b.001 .73
Interaction 19.84 b.001 .51 17.92 b.001 .49

Subtraction task
Subtraction 139.4 b.001 .88 62.98 b.001 .77
Text-entry 32.18 b.001 .63 4.29 .052 .18
Interaction 22.73 b.001 .54 2.85 .108 .13
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